Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
J Cell Biochem ; 124(5): 656-673, 2023 05.
Article in English | MEDLINE | ID: covidwho-2314301

ABSTRACT

It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Prevalence
2.
Cytotherapy ; 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2314237

ABSTRACT

BACKGROUND AIMS: Interest in cell-based therapy using extracellular vesicles (EVs) is intensifying, building upon promising preclinical research and a handful of published clinical studies. Registered clinical trials remain small, heterogeneous in design and underpowered to determine safety and efficacy on their own. A scoping review of registered studies can identify opportunities to pool data and perform meta-analysis. METHODS: Registered trials were identified by searching clinical trial databases (Clinicaltrials.gov, the World Health Organization International Clinical Trials Registry Platform and the Chinese Clinical Trial Registry) on June 10, 2022. RESULTS: Seventy-three trials were identified and included for analysis. Mesenchymal stromal cells (MSCs) were the most common cell type from which EVs were derived (49 studies, 67%). Among the 49 identified MSC-EV studies, 25 were controlled trials (51%) with a combined total of 3094 participants anticipated to receive MSC-derived EVs (2225 in controlled studies). Although EVs are being administered to treat a broad range of conditions, trials treating patients with coronavirus disease-2019 and/or acute respiratory distress syndrome were observed most commonly. Despite heterogeneity between studies, we anticipate that at least some of the studies could be combined in meaningful meta-analysis and that a combined sample size of 1000 patients would provide the ability to detect a ≥5% difference in mortality with MSC-EVs compared to controls and could be achieved by December 2023. CONCLUSIONS: This scoping review identifies potential barriers that may stall clinical translation of EV-based treatment, and our analysis calls for more standardized product characterization, use of quantifiable product quality attributes and consistent outcome reporting in future clinical trials.

3.
Front Microbiol ; 14: 1097173, 2023.
Article in English | MEDLINE | ID: covidwho-2320145

ABSTRACT

Early disease diagnosis is critical for better management and treatment outcome of patients. Therefore, diagnostic methods should ideally be accurate, consistent, easy to perform at low cost and preferably non-invasive. In recent years, various biomarkers have been studied for the detection of cardiovascular diseases, cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies. Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence gene expression after transcription. Previous studies have shown that these types of miRNAs can potentially be used as biomarkers for cancers of the breast and colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate viral and bacterial infections, such as the human immunodeficiency virus (HIV), tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne diseases is rather limited. Therefore, this review aims to introduce several miRNAs derived from exosomal plasma that may potentially serve as a disease biomarker due to the body's immune response, with special focus on the early detection of vector-borne diseases.

4.
Methods Mol Biol ; 2668: 301-311, 2023.
Article in English | MEDLINE | ID: covidwho-2316082

ABSTRACT

Extracellular vesicles (EVs) enable cell-to-cell communication and, by delivering antigens, can stimulate the immune response strongly. Approved in use SARS-CoV-2 vaccine, candidates immunize with the viral spike protein delivered via viral vectors, translated by injected mRNAs, or as a pure protein. Here, we outline a novel methodological approach for generating SARS-CoV-2 vaccine using exosome that delivers antigens from the SARS-CoV-2 structural proteins. Engineered EVs can be loaded with viral antigens, thus acting as antigens presenting EVs, eliciting strong and targeted CD8(+) T cell and B cell, offering a unique approach to vaccine development. Engineered EVs thus portray a safe, adaptable, and effective approach for a virus-free vaccine development.


Subject(s)
COVID-19 , Exosomes , Extracellular Vesicles , Humans , COVID-19 Vaccines/metabolism , Exosomes/metabolism , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/metabolism , Extracellular Vesicles/metabolism , Antigens/metabolism , Viral Proteins/metabolism
5.
Front Cell Dev Biol ; 10: 1047094, 2022.
Article in English | MEDLINE | ID: covidwho-2309332

ABSTRACT

Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.

6.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2306698

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
Biomolecules ; 13(2)2023 02 08.
Article in English | MEDLINE | ID: covidwho-2291758

ABSTRACT

Both cardiovascular disease and cancer continue to be causes of morbidity and mortality all over the world. Preventing and treating heart disease in patients undergoing cancer treatment remain an important and ongoing challenge for improving the lives of cancer patients, but also for their survival. Despite ongoing efforts to improve patient survival, minimal advances have been made in the early detection of cardiovascular disease in patients suffering from cancer. Understanding the communication between cancer and cardiovascular disease can be based on a deeper knowledge of the molecular mechanisms that define the profile of the bilateral network and establish disease-specific biomarkers and therapeutic targets. The role of exosomes, microvesicles, and apoptotic bodies, together defined as extracellular vesicles (EVs), in cross talk between cardiovascular disease and cancer is in an incipient form of research. Here, we will discuss the preclinical evidence on the bilateral connection between cancer and cardiovascular disease (especially early cardiac changes) through some specific mediators such as EVs. Investigating EV-based biomarkers and therapies may uncover the responsible mechanisms, detect the early stages of cardiovascular damage and elucidate novel therapeutic approaches. The ultimate goal is to reduce the burden of cardiovascular diseases by improving the standard of care in oncological patients treated with anticancer drugs or radiotherapy.


Subject(s)
Cardiovascular Diseases , Exosomes , Extracellular Vesicles , Neoplasms , Humans , Biomarkers
8.
Curr Stem Cell Res Ther ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2291829

ABSTRACT

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 with severe respiratory failure and organ damage that later appeared as a pandemic disease. Worldwide, people's mental and physical health and socioeconomic have been affected. Currently, with no promising treatment for COVID-19, the existing anti-viral drugs and vaccines are the only hope to boost the host immune system to reduce morbidity and mortality rate. Unfortunately, several reports show that people who are partially or fully vaccinated are still susceptible to COVID-19 infection. Evidence suggests that COVID-19 immunopathology may include dysregulation of macrophages and monocytes, reduced type 1 interferons (IFN-1), and enhanced cytokine storm that results in hypersecretion of proinflammatory cytokines, capillary leak syndrome, intravascular coagulation, and acute respiratory distress syndrome (ARDS) ultimately leading to the worsening of patient's condition and death in most cases. The recent use of cell-based therapies such as mesenchymal stem cells (MSCs) for critically ill COVID-19 patients has been authorized by the Food and Drug Administration (FDA) to alleviate cytokine release syndrome. It protects the alveolar epithelial cells by promoting immunomodulatory action and secreting therapeutic exosomes to improve lung function and attenuate respiratory failure. As a result, multiple clinical trials have been registered using MSCs that aim to use various cell sources, and dosages to promote safety and efficacy against COVID-19 infection. In this review, the possibility of using MSCs in COVID-19 treatment and its associated challenges in their use have been briefly discussed.

9.
Sensors and Actuators B: Chemical ; 382, 2023.
Article in English | Scopus | ID: covidwho-2262046

ABSTRACT

Extracellular vesicles (EVs) are nano-sized membranous particles secreted by cells. EVs have been classified into subpopulations according to their presumed biogenesis pathway, but their detailed biogenesis mechanisms still need to be fully elucidated. Enveloped viruses are another type of cell-derived nano-vesicles, and their biogenesis processes are much better known than that of EVs. Recently, studies on the similarity between enveloped viruses and EVs have been increasingly reported. The biogenesis of EVs could be better understood if these similarities are adequately investigated. In this study, we utilized a single vesicle imaging technique to visualize the protein expressions of individual nano-sized vesicles and analyzed expression patterns within single vesicles. Using this technique, we identified unique tetraspanin expression patterns in single EVs and that these patterns were closely related to their subcellular origins. The expression of CD9 or CD81 in EVs implied that they originated from the plasma membrane, and the expression of CD63 in EVs implied that they originated from endosomal organelles. We further analyzed the tetraspanin expressions of two different types of virus-like particles (VLPs) and demonstrated that the HIV-Gag-induced VLPs were more similar to EVs than SARS-CoV-2-NP/M/E-induced VLPs. In addition, HIV-Gag-GFP-expressing VLPs were highly colocalized with CD9, CD63, and CD81 signals, whereas SARS-CoV-NP-GFP-expressing VLPs were not. Based on these observations, we could assume that tetraspanin-expressing EVs might be produced through a similar process by which HIV is produced. © 2023

10.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2289274

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ABSTRACT FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

11.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2289273

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ABSTRACT FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

12.
Chinese Journal of Tissue Engineering Research ; 23(10):1618-1625, 2023.
Article in Chinese | Academic Search Complete | ID: covidwho-2289272

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) is a highly contagious, rapidly variable, and dangerous infectious disease. However, no specific and effective treatment for COVID-19 is available until now. The safety and efficacy of mesenchymal stem cells and their exosomes have been well verified in numerous clinical trials. Their immunomodulatory and tissue regeneration capabilities may support them as a prospective therapy for COVID-19 application in the clinic. OBJECTIVE: To focus on the development, pathogenesis and the current treatment status of COVID-19, efficacy and possible immunomodulatory mechanisms of mesenchymal stem cells and their exosomes for COVID-19 so as to provide new insights into the clinical treatment for the disease in the future. METHODS: Articles were searched on PubMed and CNKI with the key words of "SARS-CoV-2, COVID-19, cytokine storm, acute respiratory distress syndrome, mesenchymal stem cells, exosomes, immune regulation, tissue repair” in Chinese and English. Finally, 64 articles were collected for this review. RESULTS AND CONCLUSION: Acute respiratory distress syndrome and acute lung injury caused by cytokine storm are the primary precipitating factors of death in individuals with COVID-19. Mesenchymal stem cells and their exosomes can effectively treat the symptoms of acute respiratory distress syndrome and repair the damaged lung tissue in COVID-19 patients by reducing the cytokine storm and promoting the regeneration of alveolar epithelial cells through the interaction with immune cells and their paracrine effects. All of these investigations confirmed that mesenchymal stem cells and their exosomes can fight the COVID-19 infection, and this might be a promising, safe and effective strategy. However, more preclinical studies and randomized, controlled clinical trials are needed to conduct the biodistribution, metabolic fate, and the potential treatment risks of mesenchymal stem cells and their derived exosomes in vivo to fully exploit their clinical efficacy. (English) [ABSTRACT FROM AUTHOR] 背景:2019 冠状病毒病 (Corona Virus Disease 2019,COVID-19) 的传播性强、变异速度快、且危害较大,目前没有针对 COVID-19 的特异治疗 策略。间充质干细胞及其外泌体的安全性和有效性已在众多临床试验中得到证实,其具有的免疫调节和组织修复能力,可作为COVID-19 前 瞻性疗法的主要应用依据,具有巨大的治疗潜力。 目的:重点阐述 COVID-19 的发生发展、致病机制、治疗现状,以及间充质干细胞与其衍生外泌体治疗 COVID-19 患者的有效性和可能的免疫 调控机制,为该疾病的临床治疗提供更多的理论参考。 方法:通过检索PubMed、中国知网数据库中收录的相关文献,英文搜索词为:"SARS-CoV-2,COVID-19,cytokine storm,acute respiratory distress syndrome,mesenchymal stem cells,exosomes,immune regulation,tissue repair”,中文搜索词为:"新型冠状病毒,2019 冠状病 毒病,细胞因子风暴,急性呼吸窘迫综合征,间充质干细胞,外泌体,免疫调节,组织修复”,最终对64篇文献进行归纳总结。 结果与结论:由细胞因子风暴所引起的急性呼吸窘迫综合征和急性肺损伤是导致 COVID-19 重症患者出现死亡的主要原因。间充质干细胞及 其外泌体通过与免疫细胞之间的相互作用及其旁分泌效应,降低 COVID-19 患者体内细胞因子风暴同时促进其肺泡上皮细胞再生,可有效治 疗急性呼吸窘迫综合征且能够修复其损伤肺组织,证明是一种能够对抗 COVID-19 感染且安全、有效的治疗策略。不过仍然需要更多的临床 前和随机对照临床试验对间充质干细胞及其外泌体移植后的生物分布、体内代谢命运、潜在风险进行更多的研究,以便于更充分发挥其临 床疗效。 (Chinese) [ABSTRACT FROM AUTHOR] Copyright of Chinese Journal of Tissue Engineering Research / Zhongguo zu zhi gong cheng yan jiu is the property of Chinese Journal of Tissue Engineering Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

13.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2288607

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has presented numerous challenges to global health. Vaccines, including lipid-based nanoparticle mRNA, inactivated virus, and recombined protein, have been used to prevent SARS-CoV-2 infections in clinics and have been immensely helpful in controlling the pandemic. Here, we present and assess an oral mRNA vaccine based on bovine-milk-derived exosomes (milk-exos), which encodes the SARS-CoV-2 receptor-binding domain (RBD) as an immunogen. The results indicate that RBD mRNA delivered by milk-derived exosomes can produce secreted RBD peptides in 293 cells in vitro and stimulates neutralizing antibodies against RBD in mice. These results indicate that SARS-CoV-2 RBD mRNA vaccine loading with bovine-milk-derived exosomes is an easy, cheap, and novel way to introduce immunity against SARS-CoV-2 in vivo. Additionally, it also can work as a new oral delivery system for mRNA.

14.
Eur J Med Res ; 28(1): 86, 2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2260413

ABSTRACT

Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.


Subject(s)
Exosomes , Joint Diseases , Mesenchymal Stem Cells , MicroRNAs , Musculoskeletal Diseases , Humans , Exosomes/genetics , Exosomes/metabolism , MicroRNAs/genetics , Musculoskeletal Diseases/therapy , Musculoskeletal Diseases/metabolism , Mesenchymal Stem Cells/physiology
15.
Front Immunol ; 13: 1085057, 2022.
Article in English | MEDLINE | ID: covidwho-2259997

ABSTRACT

Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.


Subject(s)
Autoimmune Diseases , Exosomes , Neoplasms , Humans , Exosomes/metabolism , Inflammation , Neoplasms/diagnosis , Neoplasms/therapy , Immunity, Innate , Autoimmune Diseases/metabolism
16.
Front Med (Lausanne) ; 10: 1139397, 2023.
Article in English | MEDLINE | ID: covidwho-2279966

ABSTRACT

Introduction: In addition to the traditional activation of resident receptors by release of local mediators, new evidence favors the existence of exosomes in cell-to-cell communication that mediates delivery of specific cargo to modulate recipient cell function. We report that mast cell exosomes are an additional source of pro-fibrotic substances and constitute a unique pathway for the generation of excess collagen. Methods: We use primary human lung fibroblasts (HLFs) to demonstrate the uptake of labeled exosomes isolated from the human mast cell line HMC-1 (MC-EXOs), previously shown to contain protein cargo in common with human mast cell exosomes. Results: The MC-EXO uptake by HLF is to the cytosol and increases both proline hydroxylation in HLF lysate and secreted collagen, within 24 h, which is sustained over 72 h, the same time required for transforming growth factor-ß (TGF-ß) to activate collagen synthesis in the HLFs. Unlike TGF-ß, MC-EXO uptake does not induce fibrillar gene activation or invoke the Smad-nuclear transcription pathway. We show that MC-EXO uptake and TGF-ß have an additive effect on collagen synthesis in HLF and postulate that MC-EXO uptake by HLFs is a contributing factor to excess collagen synthesis and represents a unique paradigm for understanding fibrosis. Discussion: It is known that, in the lungs, mast cells are more activated and increase in number with inflammation, injury and viral infection associated with fibrosis. With the reported increased incidence of post-COVID-pulmonary fibrosis (PCPF), data from patients with severe COVID-19 are presented that show an increase in the mast cell number in lung parenchyma, the site of PCPF. Our findings provide a rationale for targeting multiple fibrogenic pathways in the management of lung fibrosis and the use of mast cell exosomes as a biomarker for the prognostic and diagnostic management of evolving fibrotic lung disease.

17.
Life Sci ; 319: 121524, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2275448

ABSTRACT

Exosomes are small membrane vesicles secreted by most cell types, and widely exist in cell supernatants and various body fluids. They can transmit numerous bioactive elements, such as proteins, nucleic acids, and lipids, to affect the gene expression and function of recipient cells. Mesenchymal stem cells (MSCs) have been confirmed to be a potentially promising therapy for tissue repair and regeneration. Accumulating studies demonstrated that the predominant regenerative paradigm of MSCs transplantation was the paracrine effect but not the differentiation effect. Exosomes secreted by MSCs also showed similar therapeutic effects as their parent cells and were considered to be used for cell-free regenerative medicine. However, the inefficient and limited production has hampered their development for clinical translation. In this review, we summarize potential methods to efficiently promote the yield of exosomes. We mainly focus on engineering the process of exosome biogenesis and secretion, altering the cell culture conditions, cell expansion through 3D dynamic culture and the isolation of exosomes. In addition, we also discuss the application of MSCs-derived exosomes as therapeutics in disease treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Cell- and Tissue-Based Therapy , Regenerative Medicine/methods , Cell Differentiation/physiology
18.
Clin Chem Lab Med ; 61(8): 1518-1524, 2023 Jul 26.
Article in English | MEDLINE | ID: covidwho-2272224

ABSTRACT

OBJECTIVES: Nearly three years into the pandemic, SARS-CoV-2 infections are occurring in vaccinated and naturally infected populations. While humoral and cellular responses in COVID-19 are being characterized, novel immune biomarkers also being identified. Recently, an increase in angiotensin-converting enzyme 2 expressing (aka, ACE2 positive) circulating exosomes (ExoACE2) were identified in the plasma of COVID-19 patients (El-Shennawy et al.). In this pilot study, we describe a method to characterize the exosome-associated microRNA (exo-miRNA) signature in ACE2-positive and ACE2-negative exosomal populations (non-ExoACE2). METHODS: We performed a sorting protocol using the recombinant biotin-conjugated SARS CoV-2 spike protein containing the receptor binding domain (RBD) on plasma samples from six patients. Following purification, exo-miRNA were characterized for ACE2-positive and ACE2-negative exosome subpopulations by RT-PCR. RESULTS: We identified differential expression of several miRNA. Specifically let-7g-5p and hsa-miR-4454+miR-7975 were upregulated, while hsa-miR-208a-3p and has-miR-323-3p were downregulated in ExoACE2 vs. non-ExoACE2. CONCLUSIONS: The SARS CoV-2 spike-protein guided exosome isolation permits isolation of ExoACE2 exosomes. Such purification facilitates detailed characterization of potential biomarkers (e.g. exo-miRNA) for COVID-19 patients. This method could be used for future studies to further the understanding mechanisms of host response against SARS CoV-2.


Subject(s)
COVID-19 , Exosomes , MicroRNAs , Humans , COVID-19/diagnosis , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Exosomes/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Pilot Projects , Biomarkers
19.
Vaccines (Basel) ; 11(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2271313

ABSTRACT

Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.

20.
Front Behav Neurosci ; 17: 1107265, 2023.
Article in English | MEDLINE | ID: covidwho-2270049

ABSTRACT

The incidence of major depressive disorder (MDD) is increasing all over the world. There is a great need for complementary or alternative therapies with high safety, few side effects, and precise efficacy to care for MDD. In China, acupuncture has significant laboratory data and clinical trials to demonstrate its antidepressant efficacy. However, there is no clear answer as to how it works. Exosomes are membranous vesicles that rely on cellular multivesicular bodies (MVBs) fused to the cell membrane for release into the extracellular matrix. Almost all cell types are capable of producing and releasing exosomes. As a result, exosomes contain complex RNAs and proteins from their relatives (Cells that secretes exosomes). They can cross biological barriers and participate in biological activities, such as cell migration, angiogenesis, and immune regulation. These properties have made them a popular research topic. Some experts have suggested that exosomes may serve as delivery vehicles for acupuncture to work. This presents both an opportunity and a new challenge for improving the protocols of acupuncture as a treatment for MDD. To better define the relationship between MDD, exosomes, and acupuncture, we reviewed the literature from the last few years. Inclusion criteria included randomized controlled trials and basic trials evaluating acupuncture in the treatment or prevention of MDD, the role of exosomes in the development and progression of MDD, and the role of exosomes in acupuncture. We believe that acupuncture may affect the distribution of exosomes in vivo, and exosomes may be a new carrier for acupuncture treatment of MDD in the future.

SELECTION OF CITATIONS
SEARCH DETAIL